Incorporating Biometric Quality In Multi-Biometrics

Julian Fierrez-Aguilar,

Javier Ortega-Garcia

Biometrics Research Lab. - ATVS

Universidad Autónoma de Madrid, SPAIN

Loris Nanni, Raffaele Cappelli, Davide Maltoni

BioLab, DEIS, Univ. Bologna, ITALY

Yi Chen, Anil K. Jain
PRIP Lab., Dept. of CSE, MSU, USA

Outline

- Motivation
- Image Quality: The FVC Experience
- FVC2004: Multi-Algorithm Fingerprint Verification
- Quality-Based Fusion
 - Experimental Setup
 - Results
- Conclusions

Motivation (I)

- Image quality:
 - Performance drop under degraded image quality.
 - Big interest in characterizing this degradation, (e.g., NIST FpVTE 2003, FVC2004, BQW)

Motivation (II)

- Multi-algorithm fingerprint recognition:
 - A number of works have shown the benefits of combining multiple approaches for fingerprint recognition.
 - Different levels of combination: sensor-level, feature-level, score-level, decision-level.

We focus on score-level fusion.

Motivation (III)

- Quality-based multimodal biometrics:
 - Recent works have shown the benefits of incorporating biometric quality when combining different biometric traits.
 - System model for score-level quality-based fusion:

Quality-based multi-algorithm fingerprint verification

Image Quality: The FVC2004 Experience

J. Fierrez-Aguilar, L. Nanni, J. Ortega-Garcia, R. Cappelli and D. Maltoni, "Combining multiple matchers for fingerprint verification: a case study in FVC2004", *Lecture Notes in Computer Science* 3617: 1035-1042, 2005.

Fingerprint Technology Evaluations

- Recent fingerprint technology evaluations:
 - Fingerprint Vendor Technology Evaluation (FpVTE2003)
 - Organized by NIST.
 - Fingerprint Verification Competitions (FVC2000, 2002, 2004)
 - Organized by BioLab (University of Bologna), National Biometric Test Center (San Jose State Univ.) and PRIP Lab. (Michigan State Univ.).

We focus on Fingerprint Verification Competition 2004.

FVC2004: Data

- Fingerprint data: 100 fingers x 8 impressions x 4 sensors
- Different DBs correspond to different fingers.
- Image quality is low to medium due to exaggerated plastic distortions, and artificial dryness and moistness.

DB1Optical
CrossMatch V300

DB2Optical

DP UareU4000

DB3Thermal
Atmel FingerChip

DB4Synthetic
SFinGe v3.0

FVC2004: Participants

Open (41 algorithms) and light (26 algorithms) sub-competitions.

	Prepro	cessing	Alignment			Features							Matching				
Participant	Segmentation	Enhancement	Before Matching, During matching	Displacement, Rotation, Scale, Non-linear	Minutiae	Singular points	Ridges	Ridge counts	Orientation field	Local ridge frequency	Texture measures	Image parts	Minutiae (global)	Minutiae (local)	Ridge pattern (geometry)	Ridge pattern (texture)	Correlation
002			D	NL													
009		$\sqrt{}$	BD	DRS													
016		$\sqrt{}$															$\sqrt{}$
026				DR													
027		$\sqrt{}$	D	DRS													$\sqrt{}$
039			D	N													
041		$\sqrt{}$	D	DR													
047			D	DRSN													

Description of FVC2004 submissions, as provided by the participants, following the taxonomy proposed in:

D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, *Handbook of Fingerprint Recognition*, Springer, 2003.

Details in http://bias.csr.unibo.it/fvc2004/ including pointers to the identities of non-anonymous participants, individual results, and comparative charts.

FVC2004: Performance Evaluation

- Experimental protocol (for each DB):
 - Genuine: $(100 \times 8 \times 7) / 2 = 2800$ genuine matching scores
 - Impostor: $(100 \times 99) / 2 = 4950$ impostor matching scores
- All matching scores in the [0,1] range.
- A comprehensive set of performance indicators is reported: score histograms, verification error rates at different operational points, computing time, memory allocated, and others.
- We focus on the **open** sub-competition, with the **EER** as the indicator for the experimental comparisons.
- Details in http://bias.csr.unibo.it/fvc2004/ and
- R. Cappelli, D. Maio, D. Maltoni, J.L. Wayman, A.K. Jain, "Performance Evaluation of Fingerprint Verification Systems", *IEEE Trans. PAMI*, Jan 2006.

FVC2004: Results

- FVC2000 (natural acquisition, 11 algorithms):
 - Winner 1.73% EER, average of first 5 systems 4.52% EER.
- FVC2002 (natural acquisition, 31 algorithms):
 - Winner 0.19% EER, average of first 5 systems 0.52% EER.
- FVC2004 (exaggerated distortion, 41 algorithms):
 - Winner 2.07% EER, average of first 5 systems 2.36% EER.

FVC2006: Announcement

- Some changes with respect to previous editions:
 - DATA: Larger DBs, 150 fingers, 12 impressions per finger.
 - DATA: Most difficult fingers from a larger pool of fingers (NFIQ).
 - PLANNED STUDIES: Interoperability, Quality.

IMPORTANT DATES:

Participant registration deadline: June 30, 2006

Development databases available online: July 1, 2006

Algorithm submission deadline: October 31, 2006

Expected publication of the results: January, 2007

For further information, please visit: http://bias.csr.unibo.it/fvc2006

or send an e-mail to: fvc2006@csr.unibo.it

How to Overcome Low Quality Images?

- New sensors:
 - Multi-Spectral Imaging.
 - Touch-less Biometric Sensors (TBS):

Multi-algorithm fusion.

FVC2004: Multi-Algorithm Fingerprint Verification

J. Fierrez-Aguilar, L. Nanni, J. Ortega-Garcia, R. Cappelli and D. Maltoni, "Combining multiple matchers for fingerprint verification: a case study in FVC2004", *Lecture Notes in Computer Science* 3617: 1035-1042, 2005.

FVC2004: Multi-Algorithm Fusion

- Performance improves with the fusion of up to 7 systems.
- Performance deteriorates when combining more than 10 systems.
- The largest improvement is obtained for the fusion of 2-3 systems.

FVC2004: Multi-Algorithm Fusion

Some interesting examples:

DB1				DB2					D	В3		DB4				
Participant	Ranking on DB1 (EER)	EER on DB1	EER on DB1 (Sum)	Participant	Ranking on DB2 (EER)	EER on DB2	EER on DB2 (Sum)	Participant	Ranking on DB3 (EER)	EER on DB3	EER on DB3 (Sum)	Participant	Ranking on DB4 (EER)	EER on DB4	EER on DB4 (Sum)	
047	1st	1.97		039	1st	1.58		047	1st	1.18		071	1st	0.61		
047 101	$\frac{1st}{2nd}$	$1.97 \\ 2.72$	1.45	039 101	1st 7th	$\frac{1.58}{3.56}$	0.92	101 075	2nd 5th	1.20 1.85	0.28	071 101	$\frac{1st}{2nd}$	$0.61 \\ 0.80$	0.48	
047 101 004	1st 2nd 6th	1.97 2.72 4.10	1.20	039 101 103	1st 7th 14th	1.58 3.56 4.99	0.73	101 075 078	$\frac{2\mathrm{nd}}{5\mathrm{th}}$ $\frac{29\mathrm{th}}{}$	1.20 1.85 7.56	0.23	071 101 113	$\begin{array}{c} 1\mathrm{st} \\ 2\mathrm{nd} \\ 12\mathrm{th} \end{array}$	0.61 0.80 1.98	0.39	
047 101 004 052	1st 2nd 6th 19th	1.97 2.72 4.10 8.41	1.17	039 004 101 103	1st 3rd 7th 14th	1.58 2.79 3.56 4.99	0.67	101 075 004 002	$\begin{array}{c} 2\mathrm{nd} \\ 5\mathrm{th} \\ 6\mathrm{th} \\ 13\mathrm{th} \end{array}$	1.20 1.85 1.89 3.82	0.21	$071 \\ 101 \\ 039 \\ 075$	$\begin{array}{c} 1\mathrm{st} \\ 2\mathrm{nd} \\ 4\mathrm{th} \\ 31\mathrm{th} \end{array}$	0.61 0.80 1.07 5.99	0.31	

Matching Strategy Based on:

- Ridge correlation
- Minutiae Local
- Minutiae Global

Quality-Based Fusion

J. Fierrez-Aguilar, Y. Chen, J. Ortega-Garcia and A. K. Jain, "Incorporating image quality in multi-algorithm fingerprint verification", *Lecture Notes in Computer Science* 3832:213-220, 2006.

System Architecture

Assumptions:

- Matching scores s_M and s_R are already normalized to the range [0,1].
- Performance of one matcher (minutiae) drops significantly as compared to the other one under image quality degradation.

$$\Rightarrow s_Q = \frac{Q}{2}s_M + (1 - \frac{Q}{2})s_R$$

NOTE: For more general formulations (*n* matchers) using Bayesian theory and SVMs see Bigun *et al.* (ICIAP 2003) and Fierrez-Aguilar *et al.* (PR 2005), respectively.

Automatic Fingerprint Quality Assessment

- Based on global features:
 - A global measure of quality is computed for each image.
 - The quality is related to the energy concentration in ring-shaped regions of the power spectrum.

Minutiae-Based Matcher

PREPROCESSING

- Normalization
- Orientation field
- ROI
- Ridge extraction& profiling

SIMILARITY

- Minutiae alignment
- Pattern matching (edit distance)

- Thinning
- Imperfection removal
- Minutiae extraction

D. Simon-Zorita, J. Ortega-Garcia,
J. Fierrez-Aguilar, J. Gonzalez-Rodriguez, "Image quality and position variability assessment in minutiae-based fingerprint verification", *IEE Proc. VISP*, vol. 150, no. 6, pp. 402-408, 2003.

Ridge-Based Matcher

PREPROCESSING

SIMILARITY

- Correlationbased alignment
- Matching based on Euclidean Distance

FEATURE EXTRACTION

- Energy
 responses of
 Gabor filters in
 different
 directions
- FingerCode

A. Ross, J. Reisman, A. K. Jain, "Fingerprint matching using feature space correlation", Proc. BioAW, *Springer LNCS*, vol. 2359, pp. 48-57, 2002.

Database: MCYT

- Scanner: UareU from Digital Persona.
- Fingerprint image: 500dpi, 400 x 256 pixels.
- Fingerprint corpus: 750 fingers (75 subjects) x 10 impressions.

J. Ortega-Garcia,
J. Fierrez-Aguilar, et al.,
"MCYT baseline corpus:
A bimodal biometric
database", IEE Proc. VISP,
vol. 150, no. 6, pp. 395401, 2003.

Experimental Protocol

- Enroll: one impression of each finger.
- Genuine matchings: remaining 9 impressions (9 x 750 trials).
- Impostor matchings: 1 impression from all the remaining fingers (750 x 749 trials)
- All fingers are classified into 5 equal-sized disjoint quality groups, based on a quality ranking.
- The quality ranking is based on the average quality of the genuine matchings corresponding to each finger:

$$Q_{matching} = \sqrt{Q_{enrolled} \cdot Q_{test}}$$

where $Q_{enrolled}$ and Q_{test} are global image quality measures.

Performance Comparison for Quality Groups

Observations:

- The performance of the minutia-based matcher drops significantly under degraded image quality.
- The performance of the ridge-based matcher is robust to the global image quality measure considered.
- Sum fusion outperforms the best system only for good quality images.
- Quality-based fusion outperforms the best system in all cases.

Fusion Results

Observations:

- Due to large differences in performance between the two systems, sum fusion improves the performance only in a region of the DET curve.
- Incorporating the image quality in the sum fusion leads to improved performance in all cases.

Conclusions

Conclusions (I)

- Large performance drop in FVC2004 with respect to previous editions due to image quality (exaggerated distortion).
- This can be overcome by multi-algorithm fusion (reduced number of heterogeneous systems).
- Multi-algorithm fusion can be further improved by incorporating image quality:
 - Quality-based fusion of ridge- and minutiae-based matchers.
 - Global quality measure based on power spectrum.
 - Large corpus comprising 7500 images from 750 fingers.

Conclusions (II)

- Experimental findings:
 - The ridge-based approach outperforms the minutiae-based approach in low quality image conditions.
 - Both approaches obtain similar performance in good quality conditions.
 - The ridge-based approach is robust to quality image degradation (almost independent of image quality) while the minutiae-based approach experiments a large performance drop.
 - Quality-based fusion overcomes the problem of performance drop of one component in multi-algorithm fingerprint verification.

Julian Fierrez-Aguilar

http://fierrez.ii.uam.es

Biometrics Research Lab./ATVS

UNIVERSIDAD AUTONOMA DE MADRID — SPAIN

